{-# LANGUAGE CPP #-}
{-# LANGUAGE PatternGuards #-}
#if __GLASGOW_HASKELL__ >= 800
{-# LANGUAGE TemplateHaskellQuotes #-}
#else
{-# LANGUAGE TemplateHaskell #-}
#endif
#ifdef TRUSTWORTHY
# if MIN_VERSION_template_haskell(2,12,0)
{-# LANGUAGE Safe #-}
# else
{-# LANGUAGE Trustworthy #-}
# endif
#endif

-----------------------------------------------------------------------------

-- |

-- Module      :  Control.Lens.Internal.FieldTH

-- Copyright   :  (C) 2014-2016 Edward Kmett, (C) 2014 Eric Mertens

-- License     :  BSD-style (see the file LICENSE)

-- Maintainer  :  Edward Kmett <ekmett@gmail.com>

-- Stability   :  experimental

-- Portability :  non-portable

--

-----------------------------------------------------------------------------


module Control.Lens.Internal.FieldTH
  ( LensRules(..)
  , FieldNamer
  , DefName(..)
  , ClassyNamer
  , makeFieldOptics
  , makeFieldOpticsForDec
  , makeFieldOpticsForDec'
  , HasFieldClasses
  ) where

import Prelude ()

import Control.Lens.At
import Control.Lens.Fold
import Control.Lens.Indexed
import Control.Lens.Internal.TH
import Control.Lens.Internal.Prelude
import Control.Lens.Lens
import Control.Lens.Plated
import Control.Lens.Prism
import Control.Lens.Setter
import Control.Lens.Getter
import Control.Lens.Tuple
import Control.Lens.Traversal
import Control.Monad
import Control.Monad.State
import Language.Haskell.TH.Lens
import Language.Haskell.TH
import qualified Language.Haskell.TH.Datatype as D
import qualified Language.Haskell.TH.Datatype.TyVarBndr as D
import Data.Maybe (fromMaybe,isJust,maybeToList)
import Data.List (nub)
import Data.Either (partitionEithers)
import Data.Semigroup (Any (..))
import Data.Set.Lens
import           Data.Map ( Map )
import           Data.Set ( Set )
import qualified Data.Set as Set
import qualified Data.Map as Map
import qualified Data.Traversable as T

------------------------------------------------------------------------

-- Field generation entry point

------------------------------------------------------------------------



-- | Compute the field optics for the type identified by the given type name.

-- Lenses will be computed when possible, Traversals otherwise.

makeFieldOptics :: LensRules -> Name -> DecsQ
makeFieldOptics rules = (`evalStateT` Set.empty) . makeFieldOpticsForDatatype rules <=< D.reifyDatatype

makeFieldOpticsForDec :: LensRules -> Dec -> DecsQ
makeFieldOpticsForDec rules = (`evalStateT` Set.empty) . makeFieldOpticsForDec' rules

makeFieldOpticsForDec' :: LensRules -> Dec -> HasFieldClasses [Dec]
makeFieldOpticsForDec' rules = makeFieldOpticsForDatatype rules <=< lift . D.normalizeDec

-- | Compute the field optics for a deconstructed datatype Dec

-- When possible build an Iso otherwise build one optic per field.

makeFieldOpticsForDatatype :: LensRules -> D.DatatypeInfo -> HasFieldClasses [Dec]
makeFieldOpticsForDatatype rules info =
  do perDef <- lift $ do
       fieldCons <- traverse normalizeConstructor cons
       let allFields  = toListOf (folded . _2 . folded . _1 . folded) fieldCons
       let defCons    = over normFieldLabels (expandName allFields) fieldCons
           allDefs    = setOf (normFieldLabels . folded . _1) defCons
       T.sequenceA (Map.fromSet (buildScaffold rules s defCons) allDefs)

     let defs = Map.toList perDef
     case _classyLenses rules tyName of
       Just (className, methodName) ->
         makeClassyDriver rules className methodName s defs
       Nothing -> do decss <- traverse (makeFieldOptic rules) defs
                     return (concat decss)

  where
  tyName = D.datatypeName     info
  s      = datatypeTypeKinded info
  cons   = D.datatypeCons     info

  -- Traverse the field labels of a normalized constructor

  normFieldLabels :: Traversal [(Name,[(a,Type)])] [(Name,[(b,Type)])] a b
  normFieldLabels = traverse . _2 . traverse . _1

  -- Map a (possibly missing) field's name to zero-to-many optic definitions

  expandName :: [Name] -> Maybe Name -> [(DefName, Maybe Name)]
  expandName allFields mName = (\x -> (x, mName)) <$> (maybeToList mName >>= _fieldToDef rules tyName allFields)

-- | Normalized the Con type into a uniform positional representation,

-- eliminating the variance between records, infix constructors, and normal

-- constructors.

normalizeConstructor ::
  D.ConstructorInfo ->
  Q (Name, [(Maybe Name, Type)]) -- ^ constructor name, field name, field type


normalizeConstructor con =
  return (D.constructorName con,
          zipWith checkForExistentials fieldNames (D.constructorFields con))
  where
    fieldNames =
      case D.constructorVariant con of
        D.RecordConstructor xs -> fmap Just xs
        D.NormalConstructor    -> repeat Nothing
        D.InfixConstructor     -> repeat Nothing

    -- Fields mentioning existentially quantified types are not

    -- elligible for TH generated optics.

    checkForExistentials _ fieldtype
      | any (\tv -> D.tvName tv `Set.member` used) unallowable
      = (Nothing, fieldtype)
      where
        used        = setOf typeVars fieldtype
        unallowable = D.constructorVars con
    checkForExistentials fieldname fieldtype = (fieldname, fieldtype)

data OpticType = GetterType | LensType | IsoType

-- | Compute the positional location of the fields involved in

-- each constructor for a given optic definition as well as the

-- type of clauses to generate and the type to annotate the declaration

-- with.

buildScaffold ::
  LensRules                                                                            ->
  Type                                        {- ^ outer type                       -} ->
  [(Name, [([(DefName, Maybe Name)], Type)])] {- ^ normalized constructors          -} ->
  DefName                                     {- ^ target definition                -} ->
  Q (OpticType, OpticStab, [(Name, Int, [(Maybe Name, Int)])])
              {- ^ optic type, definition type, field count, target fields -}
buildScaffold rules s cons defName =

  do (s',t,a,b) <- buildStab s (concatMap snd (consForDef <&> _2 . mapped . _Right %~ snd))

     let defType
           | Just (_,cx,a') <- preview _ForallT a =
               let optic | lensCase  = getterTypeName
                         | otherwise = foldTypeName
               in OpticSa cx optic s' a'

           -- Getter and Fold are always simple

           | not (_allowUpdates rules) =
               let optic | lensCase  = getterTypeName
                         | otherwise = foldTypeName
               in OpticSa [] optic s' a

           -- Generate simple Lens and Traversal where possible

           | _simpleLenses rules || s' == t && a == b =
               let optic | isoCase && _allowIsos rules = iso'TypeName
                         | lensCase                    = lens'TypeName
                         | otherwise                   = traversal'TypeName
               in OpticSa [] optic s' a

           -- Generate type-changing Lens and Traversal otherwise

           | otherwise =
               let optic | isoCase && _allowIsos rules = isoTypeName
                         | lensCase                    = lensTypeName
                         | otherwise                   = traversalTypeName
               in OpticStab optic s' t a b

         opticType | has _ForallT a            = GetterType
                   | not (_allowUpdates rules) = GetterType
                   | isoCase                   = IsoType
                   | otherwise                 = LensType

     return (opticType, defType, scaffolds)
  where
  consForDef :: [(Name, [Either Type (Maybe Name, Type)])]
  consForDef = over (mapped . _2 . mapped) categorize cons

  scaffolds :: [(Name, Int, [(Maybe Name, Int)])]
  scaffolds = [ (n, length ts, (\(a, b) -> (b, a)) <$> ts ^@.. folded <. _Right . _1) | (n,ts) <- consForDef ]

  -- Right: types for this definition

  -- Left : other types

  categorize :: ([(DefName, Maybe Name)], Type) -> Either Type (Maybe Name, Type)
  categorize (defNames, t) =
    case lookup defName defNames of
    Just c -> Right (c, t)
    Nothing -> Left t

  lensCase :: Bool
  lensCase = all (\x -> lengthOf (_2 . folded . _Right) x == 1) consForDef

  isoCase :: Bool
  isoCase = case scaffolds of
              [(_,1,[(_, 0)])] -> True
              _                -> False


data OpticStab = OpticStab     Name Type Type Type Type
               | OpticSa   Cxt Name Type Type

stabToType :: OpticStab -> Type
stabToType (OpticStab  c s t a b) = quantifyType [] (c `conAppsT` [s,t,a,b])
stabToType (OpticSa cx c s   a  ) = quantifyType cx (c `conAppsT` [s,a])

stabToContext :: OpticStab -> Cxt
stabToContext OpticStab{}        = []
stabToContext (OpticSa cx _ _ _) = cx

stabToOptic :: OpticStab -> Name
stabToOptic (OpticStab c _ _ _ _) = c
stabToOptic (OpticSa _ c _ _) = c

stabToS :: OpticStab -> Type
stabToS (OpticStab _ s _ _ _) = s
stabToS (OpticSa _ _ s _) = s

stabToA :: OpticStab -> Type
stabToA (OpticStab _ _ _ a _) = a
stabToA (OpticSa _ _ _ a) = a

-- | Compute the s t a b types given the outer type 's' and the

-- categorized field types. Left for fixed and Right for visited.

-- These types are "raw" and will be packaged into an 'OpticStab'

-- shortly after creation.

buildStab :: Type -> [Either Type Type] -> Q (Type,Type,Type,Type)
buildStab s categorizedFields =
  do (subA,a) <- unifyTypes targetFields
     let s' = applyTypeSubst subA s

     -- compute possible type changes

     sub <- T.sequenceA (Map.fromSet (newName . nameBase) unfixedTypeVars)
     let (t,b) = over both (substTypeVars sub) (s',a)

     return (s',t,a,b)

  where
  (fixedFields, targetFields) = partitionEithers categorizedFields

  fixedTypeVars, unfixedTypeVars :: Set Name
  fixedTypeVars   = closeOverKinds $ setOf typeVars fixedFields
  unfixedTypeVars = setOf typeVars s Set.\\ fixedTypeVars

  -- Compute the kind variables that appear in the kind of a type variable

  -- binder. For example, @kindVarsOfTvb (x :: (a, b)) = (x, {a, b})@. If a

  -- type variable binder lacks an explicit kind annotation, this

  -- conservatively assumes that there are no kind variables. For example,

  -- @kindVarsOfTvb (y) = (y, {})@.

  kindVarsOfTvb :: D.TyVarBndr_ flag -> (Name, Set Name)
  kindVarsOfTvb = D.elimTV (\n   -> (n, Set.empty))
                           (\n k -> (n, setOf typeVars k))

  -- For each type variable name that appears in @s@, map to the kind variables

  -- that appear in that type variable's kind.

  sKindVarMap :: Map Name (Set Name)
  sKindVarMap = Map.fromList $ map kindVarsOfTvb $ D.freeVariablesWellScoped [s]

  lookupSKindVars :: Name -> Set Name
  lookupSKindVars n = fromMaybe Set.empty $ Map.lookup n sKindVarMap

  -- Consider this example (adapted from #972):

  --

  --   data Dart (s :: k) = Dart { _arc :: Proxy s, _direction :: Int }

  --   $(makeLenses ''Dart)

  --

  -- When generating a Lens for `direction`, the type variable `s` should be

  -- fixed. But note that (s :: k), and as a result, the kind variable `k`

  -- needs to be fixed as well. This is because a type like this would be

  -- ill kinded:

  --

  --   direction :: Lens (Dart (s :: k1)) (Dart (s :: k2)) Direction Direction

  --

  -- However, only `s` is mentioned syntactically in the type of `_arc`, so we

  -- have to infer that `k` is mentioned in the kind of `s`. We accomplish this

  -- with `closeOverKinds`, which does the following:

  --

  -- 1. Use freeVariablesWellScoped to compute the free type variables of

  --    `Dart (s :: k)`, which gives us `(s :: k)`.

  -- 2. For each type variable name in `Proxy s`, the type of `_arc`, look up

  --    the kind variables in the type variable's kind. In the case of `s`,

  --    the only kind variable is `k`.

  -- 3. Add these kind variables to the set of fixed type variables.

  closeOverKinds :: Set Name -> Set Name
  closeOverKinds st = foldl' Set.union Set.empty (Set.map lookupSKindVars st) `Set.union` st

-- | Build the signature and definition for a single field optic.

-- In the case of a singleton constructor irrefutable matches are

-- used to enable the resulting lenses to be used on a bottom value.

makeFieldOptic ::
  LensRules ->
  (DefName, (OpticType, OpticStab, [(Name, Int, [(Maybe Name, Int)])])) ->
  HasFieldClasses [Dec]
makeFieldOptic rules (defName, (opticType, defType, cons)) = do
  locals <- get
  addName
  lift $ do cls <- mkCls locals
            T.sequenceA (cls ++ sig ++ def)
  where
  mkCls locals = case defName of
                 MethodName c n | _generateClasses rules ->
                  do classExists <- isJust <$> lookupTypeName (show c)
                     return (if classExists || Set.member c locals then [] else [makeFieldClass defType c n])
                 _ -> return []

  addName = case defName of
            MethodName c _ -> addFieldClassName c
            _              -> return ()

  sig = case defName of
          _ | not (_generateSigs rules) -> []
          TopName n -> [sigD n (return (stabToType defType))]
          MethodName{} -> []

  fun n = funD n clauses : inlinePragma n

  def = case defName of
          TopName n      -> fun n
          MethodName c n -> [makeFieldInstance defType c (fun n)]

  clauses = makeFieldClauses rules opticType cons

------------------------------------------------------------------------

-- Classy class generator

------------------------------------------------------------------------



makeClassyDriver ::
  LensRules ->
  Name ->
  Name ->
  Type {- ^ Outer 's' type -} ->
  [(DefName, (OpticType, OpticStab, [(Name, Int, [(Maybe Name, Int)])]))] ->
  HasFieldClasses [Dec]
makeClassyDriver rules className methodName s defs = T.sequenceA (cls ++ inst)

  where
  cls | _generateClasses rules = [lift $ makeClassyClass className methodName s defs]
      | otherwise = []

  inst = [makeClassyInstance rules className methodName s defs]


makeClassyClass ::
  Name ->
  Name ->
  Type {- ^ Outer 's' type -} ->
  [(DefName, (OpticType, OpticStab, [(Name, Int, [(Maybe Name, Int)])]))] ->
  DecQ
makeClassyClass className methodName s defs = do
  let ss   = map (stabToS . view (_2 . _2)) defs
  (sub,s') <- unifyTypes (s : ss)
  c <- newName "c"
  let vars     = D.freeVariablesWellScoped [s']
      varNames = map D.tvName vars
      fd   | null vars = []
           | otherwise = [FunDep [c] varNames]


  classD (cxt[]) className (D.plainTV c:vars) fd
    $ sigD methodName (return (lens'TypeName `conAppsT` [VarT c, s']))
    : concat
      [ [sigD defName (return ty)
        ,valD (varP defName) (normalB body) []
        ] ++
        inlinePragma defName
      | (TopName defName, (_, stab, _)) <- defs
      , let body = appsE [varE composeValName, varE methodName, varE defName]
      , let ty   = quantifyType' (Set.fromList (c:varNames))
                                 (stabToContext stab)
                 $ stabToOptic stab `conAppsT`
                       [VarT c, applyTypeSubst sub (stabToA stab)]
      ]


makeClassyInstance ::
  LensRules ->
  Name ->
  Name ->
  Type {- ^ Outer 's' type -} ->
  [(DefName, (OpticType, OpticStab, [(Name, Int, [(Maybe Name, Int)])]))] ->
  HasFieldClasses Dec
makeClassyInstance rules className methodName s defs = do
  methodss <- traverse (makeFieldOptic rules') defs

  lift $ instanceD (cxt[]) (return instanceHead)
           $ valD (varP methodName) (normalB (varE idValName)) []
           : map return (concat methodss)

  where
  instanceHead = className `conAppsT` (s : map tvbToType vars)
  vars         = D.freeVariablesWellScoped [s]
  rules'       = rules { _generateSigs    = False
                       , _generateClasses = False
                       }

------------------------------------------------------------------------

-- Field class generation

------------------------------------------------------------------------


makeFieldClass :: OpticStab -> Name -> Name -> DecQ
makeFieldClass defType className methodName =
  classD (cxt []) className [D.plainTV s, D.plainTV a] [FunDep [s] [a]]
         [sigD methodName (return methodType)]
  where
  methodType = quantifyType' (Set.fromList [s,a])
                             (stabToContext defType)
             $ stabToOptic defType `conAppsT` [VarT s,VarT a]
  s = mkName "s"
  a = mkName "a"

-- | Build an instance for a field. If the field’s type contains any type

-- families, will produce an equality constraint to avoid a type family

-- application in the instance head.

makeFieldInstance :: OpticStab -> Name -> [DecQ] -> DecQ
makeFieldInstance defType className decs =
  containsTypeFamilies a >>= pickInstanceDec
  where
  s = stabToS defType
  a = stabToA defType

  containsTypeFamilies = go <=< D.resolveTypeSynonyms
    where
    go :: Type -> Q Bool
    go (ConT nm) =
      -- Note that the call to `reify` can fail if `nm` is not yet defined.

      -- (This can actually happen if `nm` is declared in a Template Haskell

      -- quote.) If this fails, there is no way to tell if the type contains

      -- type families, so we recover and conservatively assume that is does not

      -- contain any.

      recover
        (pure False)
        (has (_FamilyI . _1 . _TypeFamilyD) <$> reify nm)
    go ty = or <$> traverse go (ty ^.. plate)

    -- We want to catch type families, but not *data* families. See #799.

    _TypeFamilyD :: Getting Any Dec ()
    _TypeFamilyD = _OpenTypeFamilyD.united <> _ClosedTypeFamilyD.united

  pickInstanceDec hasFamilies
    | hasFamilies = do
        placeholder <- VarT <$> newName "a"
        mkInstanceDec
          [return (D.equalPred placeholder a)]
          [s, placeholder]
    | otherwise = mkInstanceDec [] [s, a]

  mkInstanceDec context headTys =
    instanceD (cxt context) (return (className `conAppsT` headTys)) decs

------------------------------------------------------------------------

-- Optic clause generators

------------------------------------------------------------------------



makeFieldClauses :: LensRules -> OpticType -> [(Name, Int, [(Maybe Name, Int)])] -> [ClauseQ]
makeFieldClauses rules opticType cons =
  case opticType of

    IsoType    -> [ makeIsoClause conName | (conName, _, _) <- cons ]

    GetterType -> [ makeGetterClause conName fieldCount (snd <$> fields)
                    | (conName, fieldCount, fields) <- cons ]

    LensType   -> [ makeFieldOpticClause conName fieldCount fields irref recSyn
                    | (conName, fieldCount, fields) <- cons ]
      where
      irref = _lazyPatterns rules
           && length cons == 1
      recSyn = _recordSyntax rules && length cons == 1



-- | Construct an optic clause that returns an unmodified value

-- given a constructor name and the number of fields on that

-- constructor.

makePureClause :: Name -> Int -> ClauseQ
makePureClause conName fieldCount =
  do xs <- newNames "x" fieldCount
     -- clause: _ (Con x1..xn) = pure (Con x1..xn)

     clause [wildP, conP conName (map varP xs)]
            (normalB (appE (varE pureValName) (appsE (conE conName : map varE xs))))
            []


-- | Construct an optic clause suitable for a Getter or Fold

-- by visited the fields identified by their 0 indexed positions

makeGetterClause :: Name -> Int -> [Int] -> ClauseQ
makeGetterClause conName fieldCount []     = makePureClause conName fieldCount
makeGetterClause conName fieldCount fields =
  do f  <- newName "f"
     xs <- newNames "x" (length fields)

     let pats (i:is) (y:ys)
           | i `elem` fields = varP y : pats is ys
           | otherwise = wildP : pats is (y:ys)
         pats is     _  = map (const wildP) is

         fxs   = [ appE (varE f) (varE x) | x <- xs ]
         body  = foldl (\a b -> appsE [varE apValName, a, b])
                       (appE (varE phantomValName) (head fxs))
                       (tail fxs)

     -- clause f (Con x1..xn) = coerce (f x1) <*> ... <*> f xn

     clause [varP f, conP conName (pats [0..fieldCount - 1] xs)]
            (normalB body)
            []

-- | Build a clause that updates the field at the given indexes

-- When irref is 'True' the value with me matched with an irrefutable

-- pattern. This is suitable for Lens and Traversal construction

makeFieldOpticClause :: Name -> Int -> [(Maybe Name, Int)] -> Bool -> Bool -> ClauseQ
makeFieldOpticClause conName fieldCount [] _ _ =
  makePureClause conName fieldCount
makeFieldOpticClause _ _ [(Just fieldName, _)] _ True =
  do f <- newName "f"
     r <- newName "r"
     x <- newName "x"
     let body = appsE [ [| fmap |]
                      , lamE [varP x] (recUpdE (varE r) [(,) fieldName <$> varE x])
                      , varE f `appE` (varE fieldName `appE` varE r)
                      ]
     clause [varP f, varP r] (normalB body) []
makeFieldOpticClause conName fieldCount ((_, field):fieldsWithNames) irref _ =
  do f  <- newName "f"
     xs <- newNames "x" fieldCount
     ys <- newNames "y" (1 + length fieldsWithNames)

     let fields = snd <$> fieldsWithNames
         xs' = foldr (\(i,x) -> set (ix i) x) xs (zip (field:fields) ys)

         mkFx i = appE (varE f) (varE (xs !! i))

         body0 = appsE [ varE fmapValName
                       , lamE (map varP ys) (appsE (conE conName : map varE xs'))
                       , mkFx field
                       ]

         body = foldl (\a b -> appsE [varE apValName, a, mkFx b]) body0 fields

     let wrap = if irref then tildeP else id

     clause [varP f, wrap (conP conName (map varP xs))]
            (normalB body)
            []


-- | Build a clause that constructs an Iso

makeIsoClause :: Name -> ClauseQ
makeIsoClause conName = clause [] (normalB (appsE [varE isoValName, destruct, construct])) []
  where
  destruct  = do x <- newName "x"
                 lam1E (conP conName [varP x]) (varE x)

  construct = conE conName


------------------------------------------------------------------------

-- Unification logic

------------------------------------------------------------------------


-- The field-oriented optic generation supports incorporating fields

-- with distinct but unifiable types into a single definition.




-- | Unify the given list of types, if possible, and return the

-- substitution used to unify the types for unifying the outer

-- type when building a definition's type signature.

unifyTypes :: [Type] -> Q (Map Name Type, Type)
unifyTypes (x:xs) = foldM (uncurry unify1) (Map.empty, x) xs
unifyTypes []     = fail "unifyTypes: Bug: Unexpected empty list"


-- | Attempt to unify two given types using a running substitution

unify1 :: Map Name Type -> Type -> Type -> Q (Map Name Type, Type)
unify1 sub (VarT x) y
  | Just r <- Map.lookup x sub = unify1 sub r y
unify1 sub x (VarT y)
  | Just r <- Map.lookup y sub = unify1 sub x r
unify1 sub x y
  | x == y = return (sub, x)
unify1 sub (AppT f1 x1) (AppT f2 x2) =
  do (sub1, f) <- unify1 sub  f1 f2
     (sub2, x) <- unify1 sub1 x1 x2
     return (sub2, AppT (applyTypeSubst sub2 f) x)
unify1 sub x (VarT y)
  | elemOf typeVars y (applyTypeSubst sub x) =
      fail "Failed to unify types: occurs check"
  | otherwise = return (Map.insert y x sub, x)
unify1 sub (VarT x) y = unify1 sub y (VarT x)

-- TODO: Unify contexts

unify1 sub (ForallT v1 [] t1) (ForallT v2 [] t2) =
     -- This approach works out because by the time this code runs

     -- all of the type variables have been renamed. No risk of shadowing.

  do (sub1,t) <- unify1 sub t1 t2
     v <- fmap nub (traverse (limitedSubst sub1) (v1++v2))
     return (sub1, ForallT v [] t)

unify1 _ x y = fail ("Failed to unify types: " ++ show (x,y))


-- | Perform a limited substitution on type variables. This is used

-- when unifying rank-2 fields when trying to achieve a Getter or Fold.

limitedSubst :: Map Name Type -> D.TyVarBndrSpec -> Q D.TyVarBndrSpec
limitedSubst sub tv
  | Just r <- Map.lookup (D.tvName tv) sub =
       case r of
         VarT m -> limitedSubst sub (D.mapTVName (const m) tv)
         _ -> fail "Unable to unify exotic higher-rank type"
  | otherwise = return tv


-- | Apply a substitution to a type. This is used after unifying

-- the types of the fields in unifyTypes.

applyTypeSubst :: Map Name Type -> Type -> Type
applyTypeSubst sub = rewrite aux
  where
  aux (VarT n) = Map.lookup n sub
  aux _        = Nothing


------------------------------------------------------------------------

-- Field generation parameters

------------------------------------------------------------------------


-- | Rules to construct lenses for data fields.

data LensRules = LensRules
  { _simpleLenses    :: Bool
  , _generateSigs    :: Bool
  , _generateClasses :: Bool
  , _allowIsos       :: Bool
  , _allowUpdates    :: Bool -- ^ Allow Lens/Traversal (otherwise Getter/Fold)

  , _lazyPatterns    :: Bool
  , _recordSyntax    :: Bool
  , _fieldToDef      :: FieldNamer
       -- ^ Type Name -> Field Names -> Target Field Name -> Definition Names

  , _classyLenses    :: ClassyNamer
       -- type name to class name and top method

  }

-- | The rule to create function names of lenses for data fields.

--

-- Although it's sometimes useful, you won't need the first two

-- arguments most of the time.

type FieldNamer = Name -- ^ Name of the data type that lenses are being generated for.

                  -> [Name] -- ^ Names of all fields (including the field being named) in the data type.

                  -> Name -- ^ Name of the field being named.

                  -> [DefName] -- ^ Name(s) of the lens functions. If empty, no lens is created for that field.


-- | Name to give to generated field optics.

data DefName
  = TopName Name -- ^ Simple top-level definition name

  | MethodName Name Name -- ^ makeFields-style class name and method name

  deriving (Show, Eq, Ord)

-- | The optional rule to create a class and method around a

-- monomorphic data type. If this naming convention is provided, it

-- generates a "classy" lens.

type ClassyNamer = Name -- ^ Name of the data type that lenses are being generated for.

                   -> Maybe (Name, Name) -- ^ Names of the class and the main method it generates, respectively.


-- | Tracks the field class 'Name's that have been created so far. We consult

-- these so that we may avoid creating duplicate classes.


-- See #643 for more information.

type HasFieldClasses = StateT (Set Name) Q

addFieldClassName :: Name -> HasFieldClasses ()
addFieldClassName n = modify $ Set.insert n